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• Tagging a text with most relevant subset of labels from an extremely large 
-hundreds of thousands/millions, label set


Problem: Extreme Multi-Label Text Classification 
(XMTC)
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Advertising Healthcare (ICD)

ICD Codes

37.21: Right Heart Cardiac Catheterization

38.7: Insertion of Intraluminal Device into Superior Vena Cava

88.52: Plain Radiography of Right Heart using High Osmolar Contrast

89.8: Autopsy

99.62: Restoration of Cardiac Rhythm
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Problem: Main Challenge in XMTC
1. Datasets consists of texts with multiple 

lengthy narratives - However, only a small 
fraction of tokens are most informative with 
regard to assigning relevant codes 


• MIMIC-III/IV: more than 1500 tokens on average.


2. Code space is extremely high dimensional


• 18000 and 170000 codes in ICD-9-CM and 
ICD-10-CM/PCS


3. Code distribution is heavily skewed


• MIMIC-III: ~5411 out of 8929 codes appear < 10 
times
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So far…

• Attention is crucial in any SOTA NLP model


• Q/A[6], Translation[1,2,6], Summarization[3], Representation[4], Sentiment 
Analysis[5]


• Attention vital in XMTC

CAML (ACL ’18)[7]
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So far…: Attention!!!

• Multi-code Attention: learns code specific attention to most informative tokens


• CAML (ACL ’18)[7], MSATT-KG (CIKM ’19)[8], MultiResCNN (AAAI ’20)[9], Hyper-Core (ACL ’20)[10], 
LAAT (IJCAI ’20)[11], ISD (ACL ’21)[12], Effective-CAN (EMNLP ’21)[13], MSMN (ACL ’22)[14], DiscNet 
(ACL ’22)[15], KEPTLongformer (EMNLP ’22)[16]


• Shortcoming: learning token relevance in relation to numerous codes results in lengthy training and 
overfitting.
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Our Method: PLANT

• Pretrained & Leveraged AtteNTion: novel transfer 
learning to fine-tune attention in XMTC


• Capture token-code dynamics: pre-train Learning-
to-Rank (L2R) model that ranks token significance 
by code relevance


• L2R activations as PLANTed attention


• Benefit: Start with well-informed attn wgts rather 
than random, then fine-tune

L2R
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Our Method: PLANT
• Pretrained & Leveraged AtteNTion: capture token-

label dynamics with L2R model.


• Goal of L2R: Embed tokens to enhance relevance 
in sorting by taking dot products with label 
embeddings.


• Key step 1: Bootstrap “How much can I infer 
certain code from a token?”-> Mutual-Information 
Gain


• Key step 2: Max “How good is the code specific 
token list wrt top  tokens?” -> LambdaRank[17] /wk
𝗇𝖣𝖢𝖦@𝗄

L2R



PLANT: Transfer L2R Models to Fine-tune Attention

Our Method: Why PLANT works?

• Key Step 1: Mutual-Info gain 👍


• Key Step 2: As goes L2R so goes XMTC 👍
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Results and Improvements: Metrics

• Precision: Out of all the items the model predicted as positive, how many 
were actually correct?


• Recall: Out of all the actual positive items, how many did the model 
correctly identify as positive?


• F1:  balance conservatism (high precision but low recall) and liberalism 
(high recall but low precision)
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Results: Improvements

MIMIC-III-rare50

MIMIC-III-top50

MIMIC-III-full

MIMIC4-IV-full

• Precision: Out of all the items the model 
predicted as positive, how many were 
actually correct?


• Recall: Out of all the actual positive 
items, how many did the model correctly 
identify as positive?


• F1:  balance conservatism (high precision 
but low recall) and liberalism (high recall 
but low precision)


* indicates that the performance difference 
between PLANT and the next best is 
significant (, using the Approximate 
Randomization test). 
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Results: Juice is worth the squeeze!

 for PLANT vs LANT (Learned Attention) with different # of 

training examples on MIMIC-III-full and MIMIC-IV-full.  
𝖯@𝟣𝟧
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Conclusion
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