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Abstract
The keystone of state-of-the-art Extreme Multi-
Label Text Classification (XMTC) models is
the multi-label attention layer within the de-
coder, which deftly directs label-specific focus
to salient tokens in input text. Nonetheless,
the process of acquiring these optimal atten-
tion weights is onerous and resource-intensive.
To alleviate this strain, we introduce PLANT –
Pretrained and Leveraged AtteNTion – an in-
novative transfer learning strategy to fine-tune
XMTC decoders. The central notion involves
transferring a pretrained learning-to-rank (L2R)
model, utilizing its activations as attention
weights, thereby serving as the ‘planted’ atten-
tion layer in the decoder. On the full MIMIC-III
dataset, PLANT excels in four out of seven met-
rics and surpasses in five for the top-50 code
set, demonstrating its effectiveness. Remark-
ably, for the rare-50 code set, PLANT achieves
a significant 12.7−52.2% improvement in four
metrics. On MIMIC-IV, it leads in three met-
rics. Notably, in low-shot scenarios, PLANT
matches traditional attention models’ precision
despite using significantly less data ( 1

10 for pre-
cision at 5, 1

5 for precision at 15), highlighting
its efficiency with skewed label distributions.

1 Introduction

Extreme Multi-Label Text Classification (XMTC)
addresses the problem of automatically assigning
each data point with most relevant subset of labels
from an extremely large label set. In fact, vari-
ous real-world XMTC applications contain over
hundreds of thousands, even millions of labels and
samples. One major application of XMTC is in the
global healthcare system, specifically in the con-
text of the International Classification of Diseases
(ICD)1. ICD coding is the process of assigning
codes representing diagnoses and procedures per-
formed during a patient visit using clinical notes
documented by health professionals (Table 1). ICD

1https://www.who.int/standards/
classifications/classification-of-diseases

998.32 : Disruption of external operation wound
· · · wound infection, and wound breakdown · · ·
428.0 : Congestive heart failure
· · · DIAGNOSES: 1. Acute congestive heart failure
2. Diabetes mellitus 3. Pulmonary edema · · ·
202.8 : Other malignant lymphomas
· · · a 55 year-old female with non Hodgkin’s lymphoma
and acquired C1 esterase inhibitor deficiency · · ·
770.6 : Transitory tachypnea of newborn
· · · Chest x-ray was consistent with transient tachypnea
of the newborn · · ·
424.1 : Aortic valve disorders
· · · mild aortic stenosis with an aortic valve area of
1.9 cm squared and 2+ aortic insuffiency · · ·

Table 1: Examples of clinical text fragments and their corre-
sponding ICD codes (Li and Yu, 2020).

codes are used for both epidemiological studies
and billing of services (Bottle and Aylin, 2008).
XMTC has been utilized to automate the manual
ICD coding performed by clinical coders which is
time intensive and prone to human errors (O’malley
et al., 2005; Nguyen et al., 2018).

Building XMTC models is challenging because
datasets often consists of texts with multiple
lengthy narratives – more than 1500 tokens on
average. However, only a small fraction of to-
kens are most informative with regard to assign-
ing relevant labels. Automatically assigning labels
become even more challenging when, (1) the la-
bel space is extremely high dimensional, and, (2)
the label distribution is heavily skewed. For ex-
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Figure 1: The skewness of ICD-9-CM code distribution
for MIMIC-III (Johnson et al., 2016).
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ample, in automatic ICD coding, there are over
18000 and 170000 codes in ICD-9-CM and ICD-
10-CM/PCS2, respectively. The skewness of ICD-
9-CM label distribution in the MIMIC-III dataset
(Johnson et al., 2016) is illustrated in Figure 1 – ap-
proximately 5411 out of all the 8929 codes appear
less than 10 times.

In state-of-the-art (SOTA) NLP models, the in-
clusion of attention mechanisms is crucial, bene-
fiting various applications like Machine Transla-
tion, Summarization, Text Representation, Senti-
ment Analysis, and Question Answering (Vaswani
et al., 2017; Tang et al., 2018; Xu et al., 2020;
Kiela et al., 2018; Wang et al., 2020; Dehghani
et al., 2018). In XMTC, these attention mecha-
nisms play a vital role in addressing the challenges
of high-dimensional label spaces and skewed label
distributions. XMTC models consistently feature a
multi-label attention layer, dynamically allocating
label-specific attention weights to the most informa-
tive tokens in input text. Regardless of the specific
encoder architecture, removing this attention layer
leads to a significant drop in performance.

While attention layers are crucial in SOTA
XMTC models, learning the relevance of each to-
ken in the text in relation to numerous labels is
computationally intensive and results in lengthy
training times and overfitting risks (Figure 4).
To mitigate this challenge, we propose PLANT
– Pretrained and Leveraged AtteNTion, a novel
transfer learning mechanism to fine-tune attention
in XMTC. The core idea is to train a seperate model
that learns to rank (L2R) tokens based on their rel-
evance to labels. The pretrained L2R model that
leverages its activations as attention weights serves
as the ‘planted’ attention layer in the XMTC de-
coder. This tranferring of the L2R model ensures
the decoder starts with well-informed attention
weights rather than training from scratch with ran-
domly initialized weights. Subsequent fine-tuning
enables not only efficient convergence toward op-
timal attention weight configurations but also en-
hances the model’s ability to prioritize salient fea-
tures of the input texts.

Contributions

1. We propose PLANT, that (a) bootstraps a stan-
dalone L2R model using mutual information
gain, (b) trains the L2R model, and (c) lever-

2https://www.cdc.gov/nchs/icd/icd10cm_pcs_
background.htm

age its activation as planted attention in an
XMTC decoder. PLANT is particularly use-
ful in dealing with high dimenstional skewed
label distributions in a low shot setting. It
demonstrates comparable precision to tradi-
tional attention models, even with substan-
tially less data – 1

10 for precision at 5, 1
5 for

precision at 15 (Figure 3).
2. We introduce the inattention technique, which

strategically filters out less relevant tokens, en-
hancing the significance of attention weights
and enabling a sharper focus on critical ele-
ments within a token sequence. Additionally,
inspired by Backpropagation-Through-Time-
for-Text-Classification (Howard and Ruder,
2018), we propose a stateful decoder that ac-
cumulates information across segments, en-
abling cumulative predictions. This mech-
anism utilizes batch-level states, improv-
ing adaptability to large documents and
model convergence, eliminating text trunca-
tion needs, and ensuring stable GPU memory
usage, thereby enhancing both performance
and efficiency (Table 7).

3. We extensively evaluated PLANT on bench-
mark MIMIC-III and newly available MIMIC-
IV datasets, widely used in automatic ICD
coding research. Compared to 10 existing
SOTA models (Section 4.2), PLANT outper-
formed them across 7 different evaluation
metrics. Specifically, in MIMIC-III-full,
MIMIC-III-top50, MIMIC-III-rare50, and
MIMIC-IV-full datasets, PLANT exhibited
significant performance improvements (Ta-
ble 3, Table 4, Table 5, Table 6). We com-
pared PLANT with a SOTA model LAAT
(Vu et al., 2021) on MIMIC-IV-full, show-
ing that PLANT avoids overfitting during
training (Figure 4). We also conducted
rigorous ablation analysis (Section 5) and
made our trained models and code available
at https://anonymous.4open.science/r/
brainsplant/.

2 Related work: Automatic ICD Coding

Xie and Xing (2018) introduced LSTM with tree
structures and adversarial learning. Prakash et al.
(2017) utilized condensed memory neural networks
on MIMIC-III (Johnson et al., 2016). Baumel
et al. (2017) proposed a hierarchical GRU network.
Further enhancements include Xie et al. (2019)’s
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densely connected convolutions and multi-scale
feature attention, Li and Yu (2020)’s multi-filter
and residual convolutional layers, and Cao et al.
(2020)’s graph convolution and hyperbolic rep-
resentation. Vu et al. (2021) introduced LSTM-
based attention models, extending them to han-
dle hierarchical code relationships. Zhou et al.
(2021) proposed shared representation networks.
Liu et al. (2021) improved convolutional networks
with squeeze-and-excitation models, and Yuan et al.
(2022) introduced multi-synonyms attention net-
works. Lastly, Zhang et al. (2022) incorporated
discourse structure and addressed code-description
reconciliation, including physician informal abbre-
viations.

3 Approach

XMTC: The input is a set of documents and
their corresponding labels, D = {(xi, yi) | yi ∈
{0, 1}|L|, i = 1, . . . , d

}
, where L is the set of la-

bels. The goal of XMTC is to learn a prediction
function ŷ(xi) ∈ R|L|. The function ŷ should be
optimized such that the ŷ(xil) is high when yil = 1
(i.e., label l is relevant to xi ), and is low when
yil = 0.
Intuition: In our XMTC model (Figure 2), the
intuitive flow starts with document tokenization
into embeddings processed by a pretrained AWD-
LSTM to grasp textual contexts. The decoder intro-
duces planted attention, leveraging a L2R model’s
ability to rank token significance by label relevance,
enriching the model with a pre-understanding of
token-label dynamics. This is adeptly paired with
multi-label attention, merging learned and pre-
trained insights for feature prominence. A subse-
quent boost attention phase fine-tunes this for label-
specific discernment, culminating in a sigmoid-
derived label probability prediction. Section 3.1
details the L2R model components, and Section 3.2
describes utilizing the pretrained L2R for planted
attention.

3.1 Pretraining L2R Model

L2R Problem: In section 3.1, we use superscript
to denote the id of a label and subscript to de-
note the id of a token. The training set contains
a set of labels L =

{
l(1), l(2), · · · , l(m)

}
, and

a set of tokens T = {t1, t2, · · · , tn}. Further-
more, G =

[
g(1), g(2), · · · , g(m)

]
∈ Rn×m, and

g(i) =
[
g

(i)
1 , g

(i)
2 , · · · , g

(i)
n

]T
∈ Rn, where g

(i)
j de-
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Figure 2: Architecture of PLANT which contains AWD-
LSTM, label embedding U, mutual information gain S
and L2R model planted as attention P.

notes the relevance of the token tj with respect to
label l(i). We represent each label l(i) and token tj

with word embeddings e
l(i) and etj

, respectively.
A feature vector

x
(i)
j = Ψ

(
e

l(i) , etj

)
(1)

is created from each label-token pair
(
l(i), tj

)
, i =

1, 2, · · · , m; j = 1, 2, · · · , n, by concatenat-
ing the corresponding word embeddings e

l(i)

and etj
. The feature matrix, X(i) =[

x
(i)
1 , · · · , x(i)

n

]
and the corresponding scores,

g(i) =
[
g

(i)
1 , g

(i)
2 , · · · , g

(i)
n

]T
then form an ‘in-

stance’. The training set can be denoted as{(
X(i), g(i)

)}m

i=1
. The L2R model is associated

with a ranking function, f : x
(i)
j 7→ R. At any

point in the training, the model outputs the score

z(i) =
[
f
(
x

(i)
1

)
, · · · , f

(
x(i)

n

)]T
∈ Rn. The ob-

jective of the L2R model is to minimize the total
loss,

m∑
i=1

nDCG@k
(
z(i), g(i)

)
, (2)

where nDCG@k is the maximum allowable
DCG@k, which is defined as:

DCG@k
(
z(i), g(i)

)
:=

∑
l∈rankk(z(i))

2
g

(i)
l

log(l + 1) , 3

3here rankk(z(i)) returns the k largest indices of g(i)

ranked in descending order.



L2R Model: The ranking function f of the L2R
model is an L layered feed forward network,

f(x(i)
j ) = yL, y(l) = a(W (l) · y(l−1) + b(l)), (3)

where y(l) is layer l output, y(0) = x is input, W (l)

is layer l weight matrix, b(l) is layer l bias vector,
and a(·) is the activation function.
Bootstrapping L2R Model: Let (I, J) be a
pair of random variables for the label l(i) and
token tj over the space I × J , where I =
{label i present, label i not present} and J =
{token j present, token j not present}. Then, gi

j is
defined as the mutual information gain of I and J :

g
(i)
j =

∑
x∈I,y∈J

P(I,J)(x, y) log
(

P(I,J)(x, y)
PI(x)PJ(y)

)
,

where P(I,J) is the joint, and PI , PJ are the
marginal probability mass function of I and J , re-
spectively.
Training L2R Model: Gradient update rule to
train the L2R model on

{(
X(i), g(i)

)}m

i=1
are de-

fined as follows. Let I(i) denote the set of pairs of
token indices {j, k}, such that g

(i)
j > g

(i)
k . Also,

let z
(i)
j = f

(
x

(i)
j

)
and z

(i)
k = f

(
x

(i)
k

)
. The pa-

rameters of L2R model, wp ∈ R, are updated as
(Burges, 2010):

δwp = −η
∑

j

λj

∂z
(i)
j

∂wk
,

λj =
∑

k:{j,k}∈I(i)

λjk −
∑

k:{k,j}∈I(i)

λkj ,

λjk = − σ

1 + e
σ

(
z

(i)
j −z

(i)
k

) |∆nDCG@k|jk,

where |∆nDCG@k|jk denotes the change in
nDCG@k by swapping j and k in rank(z(i)).

3.2 Leveraging L2R as Pretrained Attention

Pretrained and Fine-tuned AWD-LSTM: We use
the AWD-LSTM architecture (Merity et al., 2017)
as LM in our experiments4. That means, AWD-
LSTM model learns hidden features from a se-
quence of n tokens ⟨t1, t2, · · · , tn⟩, where each
token is represented by word embedding etj

∈ Rse .

4We used the pretrained LM from https://docs.fast.
ai/text.models.awdlstm.html

The hidden feature learned by AWD-LSTM corre-
sponding to the jth token is represented as:

hj = AWD-LSTM(⟨et1 , · · · , etj ⟩), hj ∈ Rse

(4)
Note that all the pretrained word embeddings etj

and the parameters of the AWD-LSTM model are
finetuned on the target task using the mechanisms
proposed in Howard and Ruder (2018).
Decoder – PLANT L2R as Attention: To allocate
label-specific attention weights to the most infor-
mative tokens in the sequence ⟨t1, t2, · · · , tn⟩ we
take the following three steps.

First, the hidden features h1, h2, · · · , hn of the
sequence ⟨t1, t2, · · · , tn⟩ are concatenated to for-
mulate the matrix H = [h1, h2, · · · , hn]T ∈
Rn×se . To transform H into label-specific vec-
tors, we compute label-specfic attention weights
as:

A = softmax(HUT ), A ∈ Rn×|L| (5)

where U ∈ R|L|×se is the label embedding ma-
trix.The ith column in A represents the attention
weights corresponding to the ith label in L for each
of the n tokens. To ensure the bulk of the weight is
placed on the most informative tokens, the softmax
is applied at the column level. Here A denotes the
learned attention weights.

Second, we perform attention planting by uti-
lizing two types of attention weights: static-
planted (S) and differentiable-planted (P ). The
static-planted attention (S) remains constant and
is based on mutual information gain, while the
differentiable-planted attention (P ) comprises
trainable parameters. These mechanisms en-
hance the model’s ability to prioritize relevant
tokens. We determine the static-planted atten-
tion as S =

[
g(1), g(2), · · · , g(|L|)

]
∈ Rn×|L|,

is comprised of individual vectors g(i) =[
g

(i)
1 , g

(i)
2 , · · · , g

(i)
n

]T
∈ Rn. Each element g

(i)
j

of these vectors represents the relevance of token
tj with respect to label l(i), as precisely defined
in section 3.1. We determine the differentiable-
planted attention by computing feature vectors
x

(i)
j = Ψ

(
e

l(i) , etj

)
for each label-token pair(

l(i), tj

)
, i = 1, 2, · · · , |L|; j = 1, 2, · · · , n as

per equation 1. Then utilizing pretrained embed-
dings e

l(i) and etj
from the L2R model in sec-

tion 3.1, the pretrained L2R model computes scores
P =

[
p(1), p(2), · · · , p(|L|)

]
∈ Rn×|L|, where

https://docs.fast.ai/text.models.awdlstm.html
https://docs.fast.ai/text.models.awdlstm.html


p(i) =
[
f
(
x

(i)
1

)
, · · · , f

(
x(i)

n

)]T
∈ Rn, and f

is the ranking function from equation 3. In a de-
parture from the standard attention approach, we
introduce inattention, a pre-softmax thresholding
technique that strategically elevates the significance
of attention weights. By effectively zeroing out less
relevant tokens, this method ensures maximal focus
on pivotal tokens:

P = softmax(threshold(P , k)) (6)

where both threshold 5 and softmax are applied at
the column level.

Third, to compute the label-specific vectors, we
perform linear combinations of the hidden features
h1, h2, · · · , hn using the attention weights from
three sources: the learned attention weights in each
column of A, the static-planted attention weights
in each column of S, and the differentiable-planted
attention weights in each column of P . This is
followed by element-wise matrix multiplication
with a weight matrix W ∈ R|L|×se :

V = (AT H + ST H + P T H) ⊙ W , V ∈ R|L|×se

(7)

The purpose of W is to boost attention. The ith row
vi of V , can be thought of as the information re-
garding the ith label captured by attention from the
token sequence ⟨t1, t2, · · · , tn⟩. Finally, this label-
specific information is summed and added with a
label-specific bias followed by sigmoid activation
to produce predictions:

ŷ = sigmoid(1V T + b); 1 ∈ Rse ; b, ŷ ∈ R|L|

(8)
The training objective is to mimimize the binary
cross-entropy loss between ŷ and the target y as:

Loss(y, ŷ, θ) =
|L|∑
i=1

yi log ŷi+(1 − yi) log (1 − ŷi) ,

where θ denotes all trainable model parameters.
Inattention: In contrast to traditional attention
mechanisms, we introduce inattention (Equation 6)
a novel technique that strategically enhances atten-
tion weights’ significance by filtering less relevant
tokens, ensuring focus on critical elements within a

5

threshold(pi, k) =
{

pj , if pj > kth largest p

0 otherwise.

token sequence. Our ablation analysis consistently
identifies the optimal threshold parameter k in the
range [1, 10k′], where k′ is from the nDCG@k loss
function (Equation 2) for L2R model pretraining
(Section 3.1). This aligns with our motivation to
use an L2R model to learn token ranks, concen-
trating attention on informative tokens with higher
ranks while reducing attention to less relevant to-
kens.
Stateful Decoder: Our decoder innovates with a
stateful mechanism inspired by backpropagation
through time (BPTT) (Howard and Ruder, 2018).
Segmentation into fixed-size batches preserves the
state, consisting of the last hidden feature hn and
prediction ŷb for each batch. This state guides sub-
sequent batches, allowing cumulative predictions
through initializing the AWD-LSTM encoder with
hn and continuously adding predictions. Gradients
propagate back across batches, improving adapt-
ability to large documents and model convergence.
Our stateful decoder eliminates the need for text
truncation (Li and Yu, 2020; Xie et al., 2019), pre-
venting performance loss, and ensures stable GPU
memory usage by processing long texts in manage-
able batches.
Discriminative Fine-tuning and Gradual Un-
freezing: To fine-tune our pretrained model ef-
fectively for attention planting, we employ two
essential strategies. First, we leverage discrimina-
tive fine-tuning (Howard and Ruder, 2018). This
technique assigns distinct learning rates (LR) to
different parameter groups θl ∈

{
θe, θp, θd

}
corre-

sponding to AWD-LSTM encoder, planted decoder,
and the remaining model components. This ap-
proach optimizes the pretrained model by focusing
on areas that need the most adjustment. The update
rule for discriminative fine-tuning is as follows:

θl
t = θl

t−1 − ηl · ∇θlJ(θ)

where ∇θlJ(θ) is the gradient with respect to the
model’s loss function. For experiments we applied
half or a third of the LR for already proficient L2R
model parameters compared to others. Second, we
embrace gradual unfreezing (Howard and Ruder,
2018). This method fine-tunes the model in a layer-
wise sequence, starting from the last layer and mov-
ing gradually towards the initial layers.
Bidirectional Language Model: Unlike previous
work, we are not limited to fine-tuning a unidirec-
tional language model. For the MIMIC-III-full
and MIMIC-IV-full (Table 2), we pretrain both a



forward and backward LM. We fine-tune an XMTC
model for each LM independently and average
the classifier predictions. On MIMIC-III-full
P@15 increased from 60.61 to 61.67, and on
MIMIC-IV-full, from 54.5 to 55.6.

4 Experiments

4.1 Experimental Setup
Datasets: In our study, we utilize state-of-the-
art ICD coding models (Yang et al., 2022; Zhang
et al., 2022; Yuan et al., 2022; Liu et al., 2021;
Vu et al., 2021; Li and Yu, 2020; Cao et al., 2020;
Xie et al., 2019; Mullenbach et al., 2018). Our
primary datasets are MIMIC-III (Johnson et al.,
2016) and the newly available MIMIC-IV (John-
son et al., 2023). These datasets contain rich textual
and structured records from ICU settings, with a fo-
cus on discharge summaries. These summaries are
meticulously annotated with ICD-9 codes (MIMIC-
III) and ICD-10 codes (MIMIC-IV) to represent
diagnoses and procedures. MIMIC-III comprises
52,722 discharge summaries and 8,929 unique ICD-
9 codes. We follow the methodology in (Mul-
lenbach et al., 2018), including patient ID-based
splits for full-code experiments and a subset of
50 frequent codes. We also evaluate our model
on the few-shot MIMIC-III-rare50 dataset (Yang
et al., 2022), featuring 50 rare ICD codes. Addi-
tionally, we explore MIMIC-IV, with 122,279 dis-
charge summaries and 7,942 unique ICD-10 codes,
following Edin et al. (2023). We denote these
datasets as MIMIC-III-full, MIMIC-III-top50,
MIMIC-III-rare50, and MIMIC-IV-full. Refer
to Table 2 for dataset statistics.

MIMIC-III-full MIMIC-IV-full

Number of documents 52,723 122,279
Number of patients 41,126 65,659
Number of unique codes 8,929 7,942
Codes pr. instance: Median (IQR) 14(10 − 20) 14(9 − 20)
Words pr. document: Median (IQR) 1, 375(965 − 1, 900) 1, 492(1, 147 − 1, 931)
Documents: Train/val/test [%] 90.5/3.1/6.4 72.9/10.9/16.2

Table 2: Descriptive statistics for MIMIC-III-full and
MIMIC-IV-full discharge summary training sets.

Preprocessing: Following prior research (Mullen-
bach et al., 2018; Xie et al., 2019; Li and Yu, 2020),
we tokenize and lowercase all text while eliminat-
ing non-alphabetic tokens containing numbers or
punctuation. A distinctive feature of our approach
is the absence of preprocessed word embeddings.
Instead, we fine-tune a pretrained AWD-LSTM
model on our target dataset, allowing for parameter
refinement, including word embeddings, and the
generation of context-specific embeddings for new

words in the dataset. While the concept of fine-
tuning pretrained models is not new (Howard and
Ruder, 2018), our innovation lies in its application
to the XMTC domain. Contrary to previous prac-
tices (Li and Yu, 2020), we refrain from truncating
text, as our experiments and findings align with
those of Zhang et al. (2022), which demonstates
substantial performance variation due to truncation.
To handle longer texts, we employ our stateful de-
coder (refer to Section 3.2).

Implementation and Hyperparameters:
We ensure robustness across diverse XMTC
datasets by fine-tuning hyperparameters on the
MIMIC-III-full and MIMIC-IV-full validation
sets. Experiments are conducted on an NVIDIA
QUADRO RTX 8000 GPU with 48 GB VRAM.
We utilize the AWD-LSTM LM with an em-
bedding size of 400, 3 LSTM layers with 1152
hidden activations, and the Adam Optimizer with
β1 = 0.9, β2 = 0.99, and weight decay of 0.01.
During fine-tuning, we apply dropout rates and
weight dropout, with a batch size of 384, BPTT
of 80, 20 epochs, and a learning rate of 1e − 5.
Classifier training also includes dropout rates and
weight dropout, with a batch size of 16, BPTT of
72, and discriminative fine-tuning with gradual
unfreezing over 115 epochs (on MIMIC-III-full),
alongside scheduled weight decay and learning
rate ranges.

Evaluation metrics: To comprehensively compare
with prior ICD coding studies, we use various met-
rics, focusing on micro and macro F1 scores, AUC,
and P@k. Micro-averaging treats each (text, code)
pair individually, while macro-averaging computes
metrics per label. Micro-R reflects the ratio of true
positives to the sum of true positives and false neg-
atives for each label, while Macro-R represents the
average recall across all labels. Precision follows
a similar calculation pattern. Macro-averaged met-
rics prioritize infrequent labels. P@k denotes the
proportion of the k top-scored labels that match the
ground truth.

Baselines: These included models such as CAML
(Mullenbach et al., 2018), MSATT-KG (Xie et al.,
2019), MUltiResCNN (Li and Yu, 2020), Hyper-
Core (Cao et al., 2020), LAAT/JointLAAT (Vu
et al., 2021), ISD (Zhou et al., 2021), Effective-
CAN (Liu et al., 2021), MSMN (Yuan et al., 2022),
DiscNet (Zhang et al., 2022), and KEPTLong-
former (Yang et al., 2022).



4.2 Main Results
MIMIC-III-full (Table 3): PLANT demonstrated
notable enhancements over existing SOTA mod-
els. Specifically, when compared with Effective-
CAN, LAAT, and DiscNet, PLANT yielded su-
perior performance in terms of micro-F1, P@5,
P@8, and P@15 metrics, with improvements of
0.5%, 2.7%, 0.6%, and 0.3%, respectively. Signifi-
cantly, PLANT achieved a remarkable P@5 score
of 84%, indicative of an average of 4.2 correct pre-
dictions among the top 5; while demonstrating only
a slightly lower micro-AUCthan DiscNet.

Model
AUC F1 P@k

Macro Micro Macro Micro P@5 P@8 P@15
CAML/DR-CAML 89.7 98.6 8.8 53.9 - 70.9 56.1
MSATT-KG 91.0 99.2 9.0 55.3 - 72.8 58.1
MultiResCNN 91.0 98.6 8.5 55.2 - 73.4 58.4
HyperCore 93.0 98.9 9.0 55.1 - 72.2 57.9
LAAT/JointLAAT 92.1 98.8 10.7 57.5 81.3 73.8 59.1
ISD 93.8 99.0 11.9 55.9 - 74.5 -
Effective-CAN 92.1 98.9 10.6 58.9 - 75.8 60.6
MSMN 95.0 99.2 10.3 58.4 - 75.2 59.9
DiscNet 95.6 99.3 14.0 58.8 - 76.5 61.4
PLANT (Ours) 90.4 98.9 10.1 59.4∗ 84.0∗ 77.1∗ 61.7∗

Table 3: Results (in %) on the MIMIC-III-full test set. We
ran our model 5 times each with different random seeds for
initialization and report mean scores. * indicates that the
performance difference between PLANT and the next best is
significant (p < 0.01, using the Approximate Randomization
test). All scores in tables 3, 4, 5 and 6 are reported under the
same experimental setup.

MIMIC-III-top50 (Table 4): PLANT outper-
formed the previous SOTA baseline models of
MSMN and LAAT with regard to macro-F1,
micro-F1, P@8 and P@15, respectively; while
matching micro-AUCwith ISD and achieving
a slightly lower P@5 as compared to MSMN.
PLANT produced improvements of 0.4%, 0.3%,
0.3% and 1.4% for macro-F1, micro-F1, P@8
and P@15, respectively.

Model
AUC F1 P@k

Macro Micro Macro Micro P@5 P@8 P@15
CAML/DR-CAML 88.4 91.6 57.6 63.3 61.8 - -
MSATT-KG 91.4 93.6 63.8 68.4 64.4 - -
MultiResCNN 89.9 92.8 60.6 67.0 64.1 - -
HyperCore 89.5 92.9 60.9 66.3 63.2 - -
LAAT/JointLAAT 92.5 94.6 66.6 71.6 67.5 54.7 35.7
ISD 93.5 94.9 67.9 71.7 68.2 - -
Effective-CAN 92.0 94.5 66.8 71.7 66.4 - -
MSMN 92.8 94.7 68.3 72.5 68.0 - -
PLANT (Ours) 93.1 94.9 68.7 72.8 67.2 55.0∗ 36.3∗

Table 4: Results on the MIMIC-III-top50 test set.

MIMIC-III-rare50 (Table 5): PLANT surpassed
the prior SOTA baseline, KEPTLongformer, by
astounding margins. Specifically, by 12.9% in
macro-AUC, 12.7% in micro-AUC, 52.2% in
macro-F1, and 51.6% in micro-F1. Intriguingly,
it’s worth noting that these remarkable results were
achieved by training with only unfrozen PLANT

Model
AUC F1

Macro Micro Macro Micro
MSMN 75.3 76.2 17.1 17.2
KEPTLongformer 82.7 83.3 30.4 32.6
PLANT (Ours) 95.6∗ 96.0∗ 82.6∗ 84.2∗

Table 5: Results on the MIMIC-III-rare50 test set.

layers, without even utilizing the entire model’s
capacity. This underscores the extraordinary po-
tential of PLANT in delivering outstanding perfor-
mance with efficient training strategies in low-shot
settings.
MIMIC-IV-full (Table 6): PLANT outperformed
previous SOTA baseline model of LAAT with re-
gard to P@8 and P@15 while matching micro-
AUCwith LAAT. PLANT produced improvements
of 1.7%, 1.3% for P@8 and P@15, respectively.

Model
AUC F1 P@k

Macro Micro Macro Micro P@5 P@8 P@15
CAML/DR-CAML 91.1 98.5 16.0 55.4 - 66.8 52.2
MultiResCNN 94.5 99.0 21.1 56.9 - 67.8 53.5
LAAT/JointLAAT 95.4 99.0 20.3 57.9 - 68.9 54.3
PLANT (Ours) 94.8 99.0 19.6 57.1 78.1∗ 70.6∗ 55.6∗

Table 6: Results on the MIMIC-IV-full test set. The compar-
itive results are reported from Edin et al. (2023).

5 Analysis

Firstly, except for the Gradual Unfreezing and Bidi-
rectionality, we selectively unfreeze the layers in
decoder, keeping the encoder frozen—meaning no
backpropagation was performed on their weights
during training. This ensures that performance im-
provements are attributed directly to the decoder,
our primary focus. Secondly, all reported perfor-
mance metrics stem from the full test sets of both
MIMIC-III-full and MIMIC-IV-full datasets.
Thirdly, reported enhancements were statistically
significant (p < 0.01, using the Approximate Ran-
domization test).
Impact of PLANT (Figure 3,4): We evaluate
PLANT and LAAT (Vu et al., 2021) in contexts
with skewed label distributions. PLANT uses pre-
trained L2R activations P and mutual information
gain S, initializing the decoder’s attention weights.
While LAAT relies solely on learned attention A,
initialized randomly and learned from scratch. That
is LANT omits P and S form Equation 7. Our
analysis involves training both PLANT and LAAT
models across varying fractions of a balanced train-
ing dataset, with both models trained for up to five
epochs. The test set remains constant, and we mea-
sure P@5 and P@15 as the performance metric for



both models. The results were notable: the PLANT
model consistently matched or surpassed the LAAT
model’s performance across all training sizes, even
with significantly less data. For instance, in the case
of MIMIC-IV-full, PLANT achieved a P@5 of
0.50 and P@15 of 0.37 with a smaller training split
of 1090 and 2743 instances, respectively, matching
the performance of the LAAT model trained on a
significantly larger split of 10, 337 and 12, 902 in-
stances. Similarly, in the case of MIMIC-III-full,
PLANT achieved a P@5 of 0.47 and P@15 of 0.30,
trained with only 136 and 235 instances, respec-
tively. This performance equates to that of the
LAAT model trained on a dataset comprising 1342
and 1578 instances. These findings are visually
represented in Figure 3 through vertical and hori-
zontal lines, illustrating the substantial efficiency
gains of PLANT in terms of training data require-
ments while maintaining or improving model per-
formance. Since PLANT achieves comparable
performance to LAAT with significantly less data,
which also implies a lower number of instances
per label (aka skewed label distribution), this out-
come underscores the inefficiencies of the LAAT
approach in such scenarios. To examine overfit-
ting (Figure 4), we trained both PLANT and LAAT
on MIMIC-IV-full for 60 epochs. While PLANT
remained stable, LAAT began overfitting after 40
epochs, diverging train and test loss, leading to a
decline in P@15.

Figure 3: P@15 for PLANT vs. LAAT (Vu et al.,
2021) with different number of training examples on
MIMIC-III-full and MIMIC-IV-full.

Figure 4: PLANT does not overfit on MIMIC-IV-full,
LAAT (Vu et al., 2021) does.

Impact of Inattention (Table 7): We investigated
the impact of the inattention threshold k (Equa-
tion 6) within PLANT on MIMIC-III-full and

Ablation MIMIC-III-full MIMIC-IV-full

Without Inattention 50.95 42.40
With Inattention 51.05 42.51
Stateless 52.80 43.38
Stateful 52.90 44.22
− disc 51.40 43.29
+ disc 52.21 44.34
full unfreezing 57.78 49.78
gradual unfreezing 58.31 50.97

Table 7: P@15 for MIMIC-III-full and MIMIC-IV-full
(train split 49, 579) test set.

MIMIC-IV-full. The training splits comprised
22, 525 instances (average 49 instances per la-
bel) and 49, 579 instances (average 97 instances
per label) for the respective datasets. We trained
each model for 5 epoch and measured P@15.
For MIMIC-III-full, the model without inatten-
tion (k = 72) achieved a P@15 of 50.95, while
the model with inattention (k = 56) achieved a
slightly higher P@15 of 51.05. In the case of
MIMIC-IV-full, the model without inattention at-
tained a P@15 of 42.4, which improved to 42.51
with inattention (k = 8).
Impact of Sateful Decoder (Table 7): On the
MIMIC-III-full training dataset, using the state-
ful decoder for three epochs yielded a P@15 of
52.9, a slight improvement over 52.8 without it.
Similarly, on the MIMIC-IV-full (training split of
49, 579), employing the stateful decoder for seven
epochs significantly boosted P@15, from 43.28 to
44.22. These improvements highlight the stateful
decoder’s role in enhancing PLANT’s performance
with extensive text data.
Impact of Discriminative Fine-tuning and
Gradual Unfreezing (GU) (Table 7): On the
MIMIC-III-full, training PLANT for one epoch
with discriminative fine-tuning, applying half the
learning rate to L2R parameters, improved P@15
from 51.40 to 52.21 on the test set. Similarly, on
MIMIC-IV-full (training split of 49, 579), training
PLANT for seven epochs with a third of the learn-
ing rate for L2R parameters increased P@15 from
43.29 to 44.34. For GU explored two scenarios:
one gradually unfreezing the model layer by layer,
and the other unfreezing the entire model simultane-
ously. Both models were trained for 10 epochs. On
the MIMIC-III-full, GU increased P@15 from
57.78 to 58.31; and on MIMIC-IV-full from 49.78
to 50.97.
Interpretability Case Study (Table 8): We com-
pare PLANT’s interpretability against three base-
lines: MSATT-KG, CAML, and Text-CNN(Kim,



Code: Description Corresponding Snippets
518.81: Acute respiratory failure PLANT: ...patient had a gcs3t and required intubation...was sedated and paralyzed for immediate airway

intubation...exam vital signs hr bp rr temp tm tc no fevers since o2 sat on fio2 general appearance intubated
sedated neck supple chest decreased...neg bnzodzp neg barbitr neg tricycl neg type art temp po2 pco2 ph
caltco2 base xs intubat intubated lactate...
MSATT-KG: ...discharge diagnosis: left hemothorax, ETOH, depression, stable discharge condition...
CAML: ...CXR showed persistent small apical pneumothorax that remained unchanged, he is now
tolerating a regular diet...
Text-CNN: ...serial chest x-rays revealed a persistent left pleural effusion and due to concern for
loculated hemothorax...

530.81: Esophageal reflux PLANT: ... years ago osteoarthritis of his foot and knees gastroesophageal reflux disease abnormal psa ...
present illness yo f with h o copd no previous home o2 gerd osteoporosis..... withdraw care medications
on admission advair one puff hospital1 prilosec 20mg....
MSATT-KG: ...multiple rib fx requiring tracheostomy & feeding gastrostomy, fractures, acute renal
failure, hypertension, GERD, anxiety cataracts, discharge condition mental status...
CAML: ...right hemopneumothorax, multiple rib fx requiring tracheostomy & feeding gastrostomy,
fractures, acute renal failure, hypertension, GERD, anxiety, cataracts...
Text-CNN: ...major surgical or invasive procedure: right thoracotomy, decortication of lung, mobiliza-
tion of liver off of chest wall...

37.23: Combined right and left heart
cardiac catheterization

PLANT: ...worsened mitral valve regurgitation she underwent a cardiac cath...ostium secundum atrial
septal defect left and right heart catheterization coronary angiogram...pressures were only mildly elevated
mean rap of 6mmhg rvedp of 10mmhg...
MSATT-KG: ...his dilated cardiomyopathy was secondary to tachycardia and underwent cardiac
catheterization to evaluate for coronary disease....
CAML: ...he was noted to be in congestive heart failure. Lisinopril and digoxin were started...
Text-CNN: ...acute exacerbation of systolic heart failure, dilated cardiomyopathy, severe mitral
regurgitation...

Table 8: Interpretability evaluation results for different mod-
els.

2014). While PLANT selects top 5 tokens per label
based on attention values, baseline methods extract
informative n-grams. MSATT-KG employs multi-
scale and label-dependent attention, while CAML
and Text-CNN use label-dependent attention and
different phrase selection strategies. CAML uses
a receptive field, and Text-CNN selects positions
based on maximum channel values. In the inter-
pretability case study, PLANT attends to tokens
like ‘intubation’, ‘fio2’, and ‘pc02’. ‘fio2’ repre-
sents Fraction of Inspired Oxygen, critical in deter-
mining oxygen concentration delivered to a patient.
‘PCO2’ signifies partial pressure of carbon dioxide,
indicative of conditions like respiratory acidosis
or alkalosis. In another example, informative to-
kens include ‘gastrophageal’, ‘reflux’, ‘gerd’, and
‘prilosec’, where ‘gerd’ denotes Gastroesophageal
Reflux Disease and ‘prilosec’ is a proton pump
inhibitor. In a third example, ‘rvedp’ (Right Ven-
tricular End Diastolic Pressure) relates to cardiac
function. PLANT’s attention extends beyond com-
mon phrases, identifying tokens with significant
predictive power, enhancing interpretability com-
pared to other models.

Limitations

The PLANT method, while effective, presents a no-
table trade-off in terms of computational resources.
The necessity to pretrain and load the L2R model
imposes a substantial memory overhead compared
to traditional attention mechanisms. Consequently,
our memory constraints limited the number of
epochs for which PLANT could be trained. This as-
pect of PLANT, particularly its scalability to larger
XMTC datasets, warrants further investigation. Fu-
ture work will explore strategies to optimize mem-
ory usage, ensuring that the benefits of PLANT
can be harnessed more broadly without the current
limitations on training duration and dataset size.

Broader Impacts and Ethical
Considerations

Our research contributes to the broader field of
natural language processing (NLP) and machine
learning (ML), advancing the state-of-the-art in
XMTC. In the context of XMTC, our research has
the potential to significantly impact various sectors,
including healthcare, finance, and e-commerce. By
automating labor-intensive tasks such as medical
coding and diagnosis, these models can enhance
healthcare accessibility, particularly in underserved
communities. This can lead to improved patient
outcomes and reduced disparities in healthcare
access. Additionally, in education, XMTC mod-
els can support personalized learning experiences
by categorizing educational resources and recom-
mending tailored learning materials to students.
Furthermore, XMTC can contribute to policy de-
velopment by analyzing public opinion and sen-
timent from social media and news sources, pro-
viding valuable insights for policymakers to de-
velop evidence-based policies and interventions.
These applications demonstrate the diverse and far-
reaching societal implications of XMTC technol-
ogy. However, we acknowledge the importance
of ensuring that automated systems do not perpet-
uate biases or discrimination present in the data.
Therefore, we prioritize fairness, transparency, and
accountability in our model development process.
In summary, while our research presents exciting
opportunities for automation and efficiency gains,
we recognize the importance of ethical considera-
tions and broader societal impacts. By upholding
ethical principles and promoting responsible AI
development, we aim to maximize the positive im-
pact of our work while mitigating potential risks
and challenges.
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